
UNIVERSITATEA ”ALEXANDRU-IOAN CUZA” DIN IAS, I

FACULTATEA DE INFORMATICĂ

LUCRARE DE LICENT, Ă

A Heuristic Solver for the Directed Feedback

Vertex Set Problem

propusă de

Andrei Arhire

Sesiunea: iulie, 2022

Coordonator s, tiint, ific

Lect. Dr. Paul Diac

UNIVERSITATEA ”ALEXANDRU-IOAN CUZA” DIN IAS, I

FACULTATEA DE INFORMATICĂ

A Heuristic Solver for the Directed

Feedback Vertex Set Problem

Andrei Arhire

Sesiunea: iulie, 2022

Coordonator s, tiint, ific

Lect. Dr. Paul Diac

Avizat,

Îndrumător lucrare de licent, ă,

Lect. Dr. Paul Diac.

Data: Semnătura:

Declarat, ie privind originalitatea cont, inutului lucrării de licent, ă

Subsemnatul Arhire Andrei domiciliat ı̂n România, jud. Galat, i, mun. Tecuci,

strada Vasile Alecsandri, nr. 1, bl. U, et. 1, ap. 46, născut la data de 27 august

2000, identificat prin CNP 5000827171698, absolvent al Facultăt, ii de Informatică, Fac-

ultatea de Informatică specializarea Informatică, promot, ia 2019-2022, declar pe pro-

pria răspundere cunoscând consecint, ele falsului ı̂n declarat, ii ı̂n sensul art. 326 din

Noul Cod Penal s, i dispozit, iile Legii Educat, iei Nat, ionale nr. 1/2011 art. 143 al. 4 s, i

5 referitoare la plagiat, că lucrarea de licent, ă cu titlul A Heuristic Solver for the Di-

rected Feedback Vertex Set Problem elaborată sub ı̂ndrumarea domnului Lect. Dr.

Paul Diac, pe care urmează să o sust, in ı̂n fat, a comisiei este originală, ı̂mi apart, ine s, i

ı̂mi asum cont, inutul său ı̂n ı̂ntregime.

De asemenea, declar că sunt de acord ca lucrarea mea de licent, ă să fie verificată

prin orice modalitate legală pentru confirmarea originalităt, ii, consimt, ind inclusiv la

introducerea cont, inutului ei ı̂ntr-o bază de date ı̂n acest scop.

Am luat la cunos, tint, ă despre faptul că este interzisă comercializarea de lucrări

s, tiint, ifice ı̂n vederea facilitării falsificării de către cumpărător a calităt, ii de autor al

unei lucrări de licent, ă, de diplomă sau de disertat, ie s, i ı̂n acest sens, declar pe proprie

răspundere că lucrarea de fat, ă nu a fost copiată ci reprezintă rodul cercetării pe care

am ı̂ntreprins-o.

Data: Semnătura:

Declarat, ie de consimt, ământ

Prin prezenta declar că sunt de acord ca lucrarea de licent, ă cu titlul A Heuristic

Solver for the Directed Feedback Vertex Set Problem, codul sursă al programelor

s, i celelalte cont, inuturi (grafice, multimedia, date de test, etc.) care ı̂nsot, esc această

lucrare să fie utilizate ı̂n cadrul Facultăt, ii de Informatică.

De asemenea, sunt de acord ca Facultatea de Informatică de la Universitatea

”Alexandru-Ioan Cuza” din Ias, i, să utilizeze, modifice, reproducă s, i să distribuie ı̂n

scopuri necomerciale programele-calculator, format executabil s, i sursă, realizate de

mine ı̂n cadrul prezentei lucrări de licent, ă.

Absolvent Andrei Arhire

Data: Semnătura:

Contents

Motivation 2

1 Introduction 3

1.1 Classical Contests . 3

1.2 Optimization Challenges . 4

2 Pace Challenge 5

3 Directed Feedback Vertex Set Problem 7

4 High-Level Description 9

4.1 Preliminaries . 10

4.2 Reduction Rules . 10

4.3 Stage I . 14

4.4 Stage II . 16

4.5 Stage III . 17

5 Implementation Details 18

5.1 Complexity Analysis . 19

6 Unsuccessful Optimizations 20

7 Conclusion and Future Work 21

Bibliography 23

1

Motivation

The Directed Feedback Vertex Set is an NP − complete problem with various

applications. I decided to research the scientific advances and current solutions that

approach the problem exactly and heuristically. At the same time, encouraged by this

year’s edition of PACE [1], I have created a solver that finds results close to the global

optimum in a short time. Through the competition, I examined the solution’s perfor-

mance in large instances, built on different patterns inspired by the real world, and

compared the results obtained with those of other competitors. At the end of the com-

petition, I made a short paper[2] which I registered at a conference.

2

Chapter 1

Introduction

Competitive Programming can be considered a mind sport, just like chess. In gen-

eral, it refers to solving as quickly as possible a large percentage of a set of problems of

an algorithmic nature. The scientific committee has a set of correct solutions for each

problem and demonstrations. In essence, the process of solving a problem consists of 2

stages. The first stage is the design of the algorithm used, and the second is the imple-

mentation of ideas for the problem’s constraints. Thus, depending on the time limits,

the memory, and the dimensions of the input data, the competitor will carefully choose

the data structures to be used and develop a program with a complexity good enough

to pass all the evaluation tests under the specified conditions. The competitor will

use his knowledge of mathematics, algorithms, and data structures in the first phase,

after which he will choose a programming language that he masters and implement

the solution in a straightforward and fast way. The primary skills that a person with

experience in competitive programming acquires are solving complicated problems,

working in a team, working under stressful conditions, efficiently managing time and

deadlines, and minimizing errors. It also shows that the person is disciplined, focused,

and fast, which are essential skills. This way, a person with experience in competitive

programming can deliver high-quality software products better and deal with research

problems.

1.1 Classical Contests

Today, competitive programming is more popular and more accessible than ever.

Classic contests mean competitions in which, for each requirement in a problem, either

3

the total associated score is awarded if the competitor solves correctly, or no points

are awarded at all otherwise. Internationally, the most prestigious competitions in-

clude those for students in schools, such as the International Olympiad in Informat-

ics, the Baltic Computer Science Olympiad, the Central European Computer Science

Olympiad, those for university students, as the International Collegiate Programming

Contest, and those open to the general public such as FIICode, Facebook Hacker Cup

or Google Code Jam.

1.2 Optimization Challenges

Another type of programming competition closely related to competitive pro-

gramming is those in which an optimization problem is given. Competitors must de-

velop a program that finds a solution as close as possible to the global optimum. Often,

the problem only supports exponential complexity algorithms, and competitors create

solutions that use mathematical observations, greedy assumptions, genetic algorithms,

or neural networks. Perhaps the most famous such contest is Google Hash Code. Other

important international competitions include Parameterized Algorithms and Compu-

tational Experiments (PACE), International Student Competition in Structural Opti-

mization (ISCSO), DIMACS Implementation Challenge, Model Counting Competition,

and several competitions organized by Huawei. The problem may be a variation of a

classic NP − hard problem chosen to encourage the public to become familiar with

the problem and come up with new observations that will later materialize into new

efficient algorithms that can solve it. Also, some competitions are organized by compa-

nies that bring real problems encountered by them in the industry. For example, in the

last two years, Huawei has organized a tournament composed only of optimization

problems.

4

Chapter 2

Pace Challenge

Parameterized Algorithms and Computational Experiments (PACE) Challenge

is an annual optimization competition that started in 2016. Anyone can participate

alone or as a team member, although most participants are researchers and Ph.D. can-

didates. University professors from more than 9 European countries form the scientific

committee. So far, the committee has chosen the following challenges: Cluster Edit-

ing, Treedepth, Vertex Cover, Hypertree Width, Steiner Tree, Minimum Fill-In and

Undirected Feedback Vertex Set for which the participants had to develop a heuristic

track and or an exact one.

The challenge of the 7th edition is Directed Feedback Vertex Set. A team can

compete with up to 3 solvers who do not share a common code base. For each track,

200 instances are created. Half are public and represent the tests based on which the

preliminary ranking is created. After submission, the competitor’s sources are re-

evaluated, but this time on all 200 tests. Based on the final results, those in the first

place are invited to the Award ceremony at the International Symposium on Param-

eterized and Exact Computing (IPEC 2022) in September, when the challenge of the

next edition will be announced.

For both the exact and the heuristic version, a light version of the contest is pro-

vided, where the ranking is made only by the ten smallest instances from the public

ones. The running time is much shorter than in the official competition, the idea be-

ing to familiarize users with the submit system and test specific solutions quickly and

compare them. In the official competition, the program is limited to 8 GB of mem-

ory per heap, 8 MB per stack, 10 minutes running time for the program, and 6 hours

time penalty between two consecutive submissions. Communication with the tech-

5

nical and scientific committee members is encouraged during the competition. The

ranking is built on the last submission of each participant (not the best on public tests).

The period in which submissions can be made is about three months, and in the last

days, although the participants can send their sources, the scoreboard remains frozen.

After the deadline for submitting the code, two weeks are available for the descrip-

tions of the solutions to be uploaded through easychair.org. The descriptions of the

best programs will have the chance to be published at a conference.

The goal of the project can be found described on PACE website in [1]. Due to

this project, highly appreciated papers were born such as [21], [20], [9], [5].

6

Chapter 3

Directed Feedback Vertex Set Problem

A feedback vertex set of a graph is a set of nodes with the property that each

cycle contains at least one vertex from the set, i.e., the removal of all vertices from a

feedback vertex set leads to an acyclic graph. This problem is one of the first shown to

be NP − complete, being part of Karp’s 21 NP − complete problems[13]. It is essen-

tial to solving the problem quickly because of its applications in various areas, such as

Bayesian inference [17] and deadlock recovery. It is an element to characterize the be-

havior of modeled biological systems by differential equations [6], [8] and is significant

in the model reduction of Boolean Networks [14].

The decision problem for FVS is as follows:

FEEDBACK VERTEX SET

Instance: An (undirected or directed) graph G = (V,E) and a positive integer k.

Parameter: k

Question: Does there exist a vertex subset of size at most k that intersects every

cycle in G?

A parameterized problem is called fixed-parameter tractable if it can be solved in

O(f(k) · p(n)), where n is related to the size of the problem instance, p is a polynomial

function, k is a fixed parameter, and f is an arbitrary function that can be computed.

In NP − complete problems, the function f(k) is not expected to be polynomial. An

equivalent parameterized problem (T, q) is a kernel for (G, k) if it can be reduced from

it in a time determined only by k, where q is obtained only from k, and H is bounded

by a function dependent only by k.

7

In 2008, Chen et al. proposed an FPT branching-based algorithm [11] with a run-

ning time the 4kk · nO(1) after 15 years when the FPT Status of DFVS had been an open

problem. Recently, Benjamin Bergougnoux et al. have made significant progress in

resolving the existence of a polynomial kernel, opening new directions for future re-

search [19].

Let us talk about some heuristic approaches to the problem. There must be men-

tion at least three papers that solve the problem through a simulated annealing algo-

rithm [18], a genetic algorithm [7], and a greedy algorithm that uses reductions and

include a randomized local search [15]. I implemented a solver for each of the three

approaches. I made comparisons using custom tests, tests from problems on the in-

foarena educational archive, and the 100 public instances from the competition.

A repository where these programs are found along with other auxiliaries such

as a checker to verify if the output is a Directed Feedback Vertex Set or another that

helps to read the data in the format provided by the organizers can be found in the

pace-2022 release on GitHub [3].

Of all these algorithms, the last one proved to be the most efficient in terms of

time and quality of the result. In the continuation of the thesis, the solver I created

based on the last approach mentioned above is described and analyzed. Also, a shorter

presentation about it, the one submitted to the conference, is loaded in [2] and the

source code is available on GitHub [3], and Zenodo [4]

8

Chapter 4

High-Level Description

The algorithm I used can be structured in 3 stages to be easier to understand. In

the first stage, a solution set is obtained by alternating two processes until the graph

becomes empty. The first consists of reducing the graph to one with fewer vertices or

edges, which allows a common optimum. The second process consists of the heuristic

selection of a node that must be part of the solution. In the second stage, I try elim-

inating the redundant nodes from the solution obtained in the previous step. In the

last part, several local searches are performed starting from a subset of the best-known

solution.

The problem can be viewed in the following way. I have to place each vertex

in a set A or a set B such that at the end, A is a minimum feedback vertex set and B

is the acyclic remainder. A group of vertices can be placed in A or B based on some

verification done in polynomial time.

9

4.1 Preliminaries

Let G = (V,E) be a directed graph.

• N−
G (v) = {u ∈ V | ∃(u, v) ∈ E ∧ ∄(v, u) ∈ E}, d−G(v) = |N

−
G (v)|;

• N+
G (v) = {u ∈ V | ∄(u, v) ∈ E ∧ ∃(v, u) ∈ E}, d+G(v) = |N

+
G (v)|;

• N±
G (v) = {u ∈ V | ∃(u, v) ∈ E ∧ ∃(v, u) ∈ E}, d±G(v) = |N

±
G (v)|;

• G− v = (V \{v}, E ∩ {{V \{v}} × {V \{v}}});

• G ◦ v = (V \{v}, E ∩ {{{V \{v}} × {V \{v}}} ∪ {{N−
G (v) ∪ N±

G (v)} × {N
+
G (v) ∪

N±
G (v)}}});

• G is a diclique if ∀x, y ∈ V, x ̸= y and {(x, y), (y, x)} ⊂ E.

For a node v, elements of {N−
G (v) ∪ N±

G (v)} are named predecessors and elements

{N−
G (v) ∪ N±

G (v)} are named successors. I will refer to G − v operation as vertex v

removal (remove v together with all its adjacent edges) and to G◦v operation as vertex

v merger (connect all its predecessors with all its successors and exclude v from the

graph). Also, during the paper, by (D/M)FVS, I will refer to the (Directed/Minimum)

Feedback Vertex Set.

4.2 Reduction Rules

The following two operations are considered to be reductions:

• If a vertex can be part of set A without affecting the solution’s optimality, I re-

move it and eventually introduce it in the solution set.

• If a vertex can be part of set B without affecting the solution’s optimality, then I

merge it.

We make usage of 8 reduction rules described in [16], [12] and [15].

Reduction Rule 1. If there exists a vertex v ∈ V and an edge (v, v) ∈ E, remove v.

In this case, vertex v contains a self-loop. It is erased and inserted into the solu-

tion.

10

Reduction Rule 2. If there exists a vertex v ∈ V , (v, v) ̸∈ E with d−G(v) + d±G(v) ≤ 1 or

d+G(v) + d±G(v) ≤ 1, merge v.

Vertex v can have d+G(v) = 0 or d−G(v) = 0, then it can not be part of any cycle.

Otherwise, d+G(v) = 1 or d−G(v) = 1, connecting all its predecessors with all its successors

and excluding v from the graph (merge operation) will not affect the optimality. In both

scenarios v is not considered in the solution.

In example below vertex Z is merged because d−G(Z) = 0 and d−G(v) = 1.

A

B

C

D

X Z

A

B

C

D

X

Y Y

Fig. 1. Concept of the Second Reduction

Reduction Rule 3. If there exists a vertex v ∈ V , (v, v) ̸∈ E, min (d−G(v), d
+
G(v)) = 0 and

N±
G (v) forms a diclique, remove N±

G (v) and merge v.

The critical observation here is that in a diclique, at most, one node will not be

part of the solution because any two vertices form a cycle. Thus, the diclique can be

viewed as a single node, so rule two can be applied further.

C

D E

B

A

Fig. 2. Concept of the Third Reduction

Node D ca be merged and not included in DFV S, {C, E} can be removed and

included in DFV S.

Reduction Rule 4. If there exist vertices u, v ∈ V , (u, v) ∈ E ∧ (v, u) ̸∈ E and u and v

are in different strongly connected components of the graph (V,E\{E ∩ {(x, y),∀x ∈

V, y ∈ N±
G (x)}}), erase (u, v).

Edges between vertices in different strongly connected components are not part

of any cycle (otherwise, the vertices would be in the same component). Thus all these

11

edges can be deleted. Furthermore, in a diclique with two vertices, at least one node

will be removed, so edges that are part of a diclique can be ignored when strongly con-

nected components are computed.

B

C

D

E

A

Fig. 3. Concept of the Fourth Reduction

Edges (A,C) and (A,D) can be removed.

Reduction Rule 5. If there exist vertices u, v ∈ V , (u, v) ∈ E ∧ (v, u) ̸∈ E and (N−
G (u) ⊂

{N−
G (v) ∪N±

G (v)}) ∨ (N+
G (v) ⊂ {N

+
G (u) ∪N±

G (u)}), erase (u, v).

The idea with this rule is to delete a set of edges with the property that there is

no minimal cycle using them since only minimal cycles need to be broken to compute

the feedback vertex set.

The following three reduction rules are obtained based on reduction rule three

together with the idea that, at most, one node in a diclique is not part of the solution.

A B

C

D

A B

C

D

E

Fig. 4. Concept of the Fifth Reduction

(a) (b)

In both examples, (A,B) can be erased.

Reduction Rule 6. If there exists a node v ∈ V , (v, v) ̸∈ E such that {N+
G (v) ∪ N±

G (v)}

or {N−
G (v) ∪N±

G (v)} forms a diclique, merge v.

Let’s consider an example where {N+
G (v) ∪ N±

G (v)} is a diclique and N−
G (v) ̸= ∅.

Since {N+
G (v)∪N

±
G (v)} is diclique, it can be compressed to at most one node. That node

can be either part of N±
G (v) or N+

G (v). In both cases node v can be reduced using second

reduction. Such an example is shown in Fig. 5.

12

C

D EA B

Fig. 5. Concept of the Sixth Reduction

Vertex B can be merged and not included into DFV S.

Reduction Rule 7. If there exists a node v ∈ V , (v, v) ̸∈ E and {N−
G (v)∪N

+
G (v)∪N

±
G (v)}

can be split in two sets, N±
G (v) is included in one of them and each set forms a diclique,

merge v.

That diclique containing N±
G (v) can be reduced to a single vertex, having at most

two edges with v.

C

D E

A

B

F

Fig. 6. Concept of the Seventh Reduction

Vertex B can be merged and not included into DFV S.

Reduction Rule 8. If there exists a node v ∈ V , (v, v) ̸∈ E, d±G(v) = 0 and {N+
G (v) ∪

N−
G (v)} can be split in at most three sets and each set forms a diclique, merge v.

Each diclique can be reduced to a single vertex. Therefore v will have at most

three edges, one for each successor or predecessor.

A

B C

D

E

F

G

Fig. 7. Concept of the Eighth Reduction

Vertex A can be merged and not included into DFV S.

13

4.3 Stage I

In the first part of the algorithm, reduction rules are applied until the graph no

longer supports any. If the graph is not empty, a promising vertex is selected to be

part of the solution and removed. These two operations are performed until the graph

becomes empty. A vertex v is considered the best candidate in the selection process

if it maximizes among all the other vertices either (d+G(v) + d±G(v)) · (d
−
G(v) + d±G(v)) or

d±G(v) · ∞ + d−G(v) · d
+
G(v). The higher the value in the function, the more promising

the node is to be part of the solution set. The first criterion is obtained based on two

observations: a node with many neighbors is more likely to be part of many cycles.

Therefore, it is chosen to the detriment of another node with few neighbors. At the

same time, a node for which the difference between the internal and external degree

is small will be chosen in favor of a node with the same number of neighbors but for

which the difference is greater. This is because the node with the big difference is

closer to the situation where it loses enough neighbors to be reduced by a reduction

operation. The second criterion chooses the vertex with the highest d±G value. In the

case of a tie, the same criterion described earlier is applied. Other criterion that I used

and obtained a satisfactory result but lower than the two above is (d+G(v) + d−G(v) +

d±G(v))− α · |d+G(v) + d−G(v)|, α ∈ (0, 1].

Although these three lead to excellent results, they do not always make the best

choice.

A

B

X

Y

C

D E

Fig. 8. Example of a Heuristic Selection Failure

Z

{A,B} forms a 2-diclique, d±G(A) = d±G(B) = 3;

{C,D,E} forms a 3-diclique, d±G(C) = d±G(D) = d±G(E) = 4;

{X, Y } are not part of any diclique, d±G(X) = d±G(Y) = 5.

14

According to the above criteria, nodes X and Y will be removed first, the rest

acyclic consisting of a node of {A,B} and a node of {C,D,E}. If I also have a node Z

whose set of neighbors is the same as that of X or Y , the result obtained by applying

the criteria would not be optimal because you would have removed the nodes of max-

imum degree firstly, i.e., X , Y and Z, and the cardinal of the solution would have been

6 (for example {X, Y, Z,A,C,D}). But the optimal solution contains 5 nodes, namely

{A,B,C,D,E}.

Algorithm 1 Stage I
Require: G− a directed graph, α ∈ (0, 1]

F ← ∅

E ← getNumberOfEdges(G)

while G ̸= ∅ do

G,F ← useLightReductions(G,F)

if E ≤ α · getNumberOfEdges(G) then

G,F ← useHeavyReductions(G,F);

E ← getNumberOfEdges(G)

end if

if G ̸= ∅ then

V ← selectV ertex(G)

G← remove(G, V)

F ← F ∪ V

end if

end while

return F

15

4.4 Stage II

After several vertex selections, some of them may become redundant in the solu-

tion, i.e., they are not part of any cycle, so that they can be excluded from the feedback

vertex set. To maximize the number of excluded vertices, I take them in the reversed

order of their insertion and introduce them in the acyclic graph. At a fixed vertex, I

check if the resulting graph is acyclic or not using an optimized version of the Tarjan

algorithm for computing strongly connected components. If the graph is acyclic, the

vertex will be erased from the solution, and the graph will keep the changes. This step

is presented in [15] and [10].

Algorithm 2 Stage II
Require: G - a directed graph, F - a DFV S of G, A - the acyclic remainder of G \ F

for all v ∈ F do

if isAcyclic(A ∪ {v}) then

A← A ∪ {v}

F ← F \ {v}

end if

end for

return F

X

A

B C

D

Fig. 8. Example of a redundant vertex

Suppose that nodes A,B,C,D have two more neighbors just like X , so that they

all have only three neighbors and d±G(A) = d±G(B) = d±G(C) = d±G(D) = 3 and d±G(X) = 4.

Also, due to the graph’s structure, all five nodes are introduced in the solution set

within the heuristic choice. In this case, node X (chosen before the others) can be re-

16

moved from the solution because all its neighbors are in the solution, so it has no way

to be part of any cycle.

4.5 Stage III

In the last part of the algorithm, several local searches are performed [15]. A local

search runs the same process as the one presented in stage one but on a subgraph of G.

Subgraphs are obtained by removing a specific subset uniformly random from the best

feedback vertex set found so far, together with a particular subgroup from the acyclic

remainder. Additionally, a slightly modified version of the algorithm from stage two

is applied to the new solution depending on the remaining time. Although the results

of this local search are outstanding and often reach the optimum, finding the optimal

solution is not always guaranteed.

Algorithm 3 Stage III
Require: G - a directed graph, F - a DFV S of G, α ∈ (0, 1]

while availableT ime do

F ′ ← getRandomSubset(F);

G′ ← G \ F ′;

S ← StageI(G′, α)

S ← StageII(G′, S,G′ \ S)

S ← S ∪ F ′

if |S| < |F | then

F ← S

end if

end while

return F

17

Chapter 5

Implementation Details

First of all, I mention that I used C++ because it is a fast language, C++ runtime

is more predictable since it has fewer hidden costs, the code is shorter compared to

an analog one in Java, it uses less RAM, and it has an extensive library called the

Standard Template Library, which is a collection of C++ templates to provide common

programming data structures and functions. During the development of the program

and due to the low limit of the stack’s memory limit and the relatively low time limit,

I minimized as much as possible the number of variables and data structures allocated

locally, declaring them globally.

To keep the actual graph in memory, I used adjacent lists implemented as a vector

of unordered sets. This is because the adjacent lists of nodes may support changes

(delete or insert), allowing operations to reduce or remove nodes based on the heuristic

selection. A node v holds three unordered sets with the elements of N+
G (v), N

−
G (v) and

N±
G (v). An unordered set with all the edges of the graph is also kept to check for specific

edges. This type of set is implemented using hast tables and has average search, delete

and insert time O(1), making it the ideal data structure for this problem.

Using this data structure, I can identify in O(1) nodes that the first two types of

operations can reduce. Each time I delete or add an edge, I check for both incident

nodes to see if they can be reduced. If so, I will put them in a stack specific to the

reduction criterion that may apply. Thus, I will have a stack for vertices that have self-

loop, a stack for vertices that have the external or internal degree equal to zero, and

another for nodes with the internal or external degree equal to one. I will use only the

nodes in the specific stack when I want to reduce the graph by a particular operation.

For the other reduction criteria, it is necessary to go through the entire list of nodes or

18

edges as the case may be.

Another essential detail to mention is that for the reason of the low memory limit

for the stack and the large instances where the number of edges exceeds five million

and the number of nodes exceeds 30.000, I had to implement some iterative function-

alities, although in the classic format they are recursively coded. Here I refer mainly

to the iterative implementation of Tarjan’s algorithm for determining strongly con-

nected components. This implementation was used in reduction four and as part of

the checker program.

5.1 Complexity Analysis

Both selection criteria are simple but not always optimal, adding significant ben-

efits. Implying only the number of adjacent neighbors allows some reductions to be

performed efficiently using hash sets, keeping most of the data in memory. After each

update of the graph, reductions one and two can be applied in O(1). Reduction three

is implemented in O((|V |+ |E|) · log (|V |)) and reduction four in O(|V |+ |E|). The rest

are run only for vertices with degrees bounded by a small constant, and I assume the

complexity is O(|V | + |E|). The first two reductions are run after each graph change.

The others are run after each loss of around 5%−25% of the number of edges. For every

iteration among T ones, I choose to restore around 30% of the vertices into the acyclic

remainder and run the local search. As an instance can be reduced in linear time to a

graph with |V | < |E|, the final complexity of the program is O(T · (|V |+ |E| · log |E|)),

based on Master’s Theorem [22], where T is the number of local searches. T is a pa-

rameter bounded by the time limit.

19

Chapter 6

Unsuccessful Optimizations

One idea I tested was to change the output of the solver. Instead of finding a

DFV S as small as possible, it aimed to find a DAG as large as possible. The main

difference is that within the heuristic selection, the least promising node is chosen now.

However, on tests with a large number of nodes and with a vast number of edges, the

number of edges was growing too much after every merge of the heuristically selected

node, and, on some tests, the memory limit for the stack was exceeded.

In order to optimize the source code, to make it run faster or consume less mem-

ory, I tried different experiments. The main focus was on the data structures used.

Therefore I tried to find faster variants to replace the unordered sets.

I built several custom hash tables to keep lists of adjacency. Following the change,

however, the running time was not stable as I could not find a large prime number that

would form the buckets as uniform as possible for all local instances. The complexity

on the insert is O(1), and in search and delete it depends on the size of the bucket, but

the average is still O(1).

In practice, this hash is represented as an array with the size of the maximum

number of numbers that can simultaneously be present in the hash. When I want to

insert an item, priority is given to the free positions where a number has been deleted

over the unused ones. Free positions are held in a stack. Each item also carries a pointer

towards the next item from the same bucket. When I want to search, I go through the

element by element with those pointers. A delete operation implies a search in which I

modify the element predecessor’s pointer and put the element’s position in the stack.

20

Chapter 7

Conclusion and Future Work

Following this process, I developed an efficient heuristic solver that finds a Di-

rected Feedback Vertex Set Problem. The solver is public and free to use. Below is the

ranking of the contest after more than two months since submissions became avail-

able. This ranking is built on the public instances. The final version of the scoreboard

includes the results obtained on all the 200 tests, and it is expected to be published at

the end of July 2022.

I hope that through this solver, I can open a way to new heuristics with even bet-

ter performance. For example, I propose a hybrid between the algorithm described and

a genetic algorithm. Another idea is to assign each node a specific probability of being

inserted or not into the solution within the heuristic selection based on a previously

trained neural network.

21

Figure 7.1: Scoreboard

22

Bibliography

[1] PACE Challenge about. https://pacechallenge.org/about/. Accessed:

2022-06-12.

[2] PACE Solver paper. https://andrei-arhire.web.app/assets/

PACE2022.pdf. Accessed: 2022-06-12.

[3] Andrei Arhire. Pace solver, 2022. URL: https://github.com/

AndreiiArhire/PACE2022.

[4] Andrei Arhire and Paul Diac. UAIC ANDREIARHIRE - A Heuristic Solver for

the Directed Feedback Vertex Set Problem, June 2022. doi:10.5281/zenodo.

6646187.

[5] Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil: A Modular Library

for Computing Tree Decompositions. In Costas S. Iliopoulos, Solon P. Pissis, Si-

mon J. Puglisi, and Rajeev Raman, editors, 16th International Symposium on Ex-

perimental Algorithms (SEA 2017), volume 75 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 28:1–28:21, Dagstuhl, Germany, 2017. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/

volltexte/2017/7605, doi:10.4230/LIPIcs.SEA.2017.28.

[6] Atsushi Mochizuki. . . Bernold Fiedler. Dynamics and control at feedback vertex

sets. i: Informative and determining nodes in regulatory networks. Journal of Dy-

namics and Differential Equations, 25:563–604, 2013. URL: http://doi.org/10.

1007/s10884-013-9312-7, doi:10.1007/s10884-013-9312-7.

[7] Vincenzo Cutello and Francesco Pappalardo. Targeting the minimum vertex set

problem with an enhanced genetic algorithm improved with local search strate-

gies. In International Conference on Intelligent Computing, pages 177–188. Springer,

2015.

23

https://pacechallenge.org/about/
https://andrei-arhire.web.app/assets/PACE2022.pdf
https://andrei-arhire.web.app/assets/PACE2022.pdf
https://github.com/AndreiiArhire/PACE2022
https://github.com/AndreiiArhire/PACE2022
https://doi.org/10.5281/zenodo.6646187
https://doi.org/10.5281/zenodo.6646187
http://drops.dagstuhl.de/opus/volltexte/2017/7605
http://drops.dagstuhl.de/opus/volltexte/2017/7605
https://doi.org/10.4230/LIPIcs.SEA.2017.28
http://doi.org/10.1007/s10884-013-9312-7
http://doi.org/10.1007/s10884-013-9312-7
https://doi.org/10.1007/s10884-013-9312-7

[8] Mochizuki Atsushi; Fiedler Bernold; Kurosawa Gen; Saito Daisuke. Dynamics

and control at feedback vertex sets. ii: A faithful monitor to determine the diver-

sity of molecular activities in regulatory networks. Journal of Theoretical Biology,

335:130–146, 2013. URL: http://doi.org/10.1016/j.jtbi.2013.06.009,

doi:10.1016/j.jtbi.2013.06.009.

[9] Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Ste-

fan Rümmele. Turbocharging Treewidth Heuristics. In Jiong Guo and Danny

Hermelin, editors, 11th International Symposium on Parameterized and Exact Com-

putation (IPEC 2016), volume 63 of Leibniz International Proceedings in Infor-

matics (LIPIcs), pages 13:1–13:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/

volltexte/2017/6932, doi:10.4230/LIPIcs.IPEC.2016.13.

[10] Berend Hasselman. An efficient method for detecting redundant feedback ver-

tices. CPB Discussion Paper 29, CPB Netherlands Bureau for Economic Pol-

icy Analysis, April 2004. URL: https://ideas.repec.org/p/cpb/discus/

29.html.

[11] Chen Jianer; Liu Yang; Lu Songjian; O’sullivan Barry; Razgon Igor. A fixed-

parameter algorithm for the directed feedback vertex set problem. Journal of the

ACM, 55:1–19, 2008. URL: http://doi.org/10.1145/1411509.1411511,

doi:10.1145/1411509.1411511.

[12] Hen-Ming Lin; Jing-Yang Jou. On computing the minimum feedback vertex set of

a directed graph by contraction operations. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 19:295–307, 2000. URL: http://doi.

org/10.1109/43.833199, doi:10.1109/43.833199.

[13] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.

Springer US, Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.

[14] Koichi Kobayashi. Design of fixed points in boolean networks using feedback

vertex sets and model reduction. Complexity, 2019:1–9, 2019. URL: http://doi.

org/10.1155/2019%2F9261793, doi:10.1155/2019/9261793.

[15] Mile Lemaic. Markov-Chain-Based Heuristics for the Feedback Vertex Set Problem for

Digraphs. PhD thesis, Universität zu Köln, 2008.

24

http://doi.org/10.1016/j.jtbi.2013.06.009
https://doi.org/10.1016/j.jtbi.2013.06.009
http://drops.dagstuhl.de/opus/volltexte/2017/6932
http://drops.dagstuhl.de/opus/volltexte/2017/6932
https://doi.org/10.4230/LIPIcs.IPEC.2016.13
https://ideas.repec.org/p/cpb/discus/29.html
https://ideas.repec.org/p/cpb/discus/29.html
http://doi.org/10.1145/1411509.1411511
https://doi.org/10.1145/1411509.1411511
http://doi.org/10.1109/43.833199
http://doi.org/10.1109/43.833199
https://doi.org/10.1109/43.833199
https://doi.org/10.1007/978-1-4684-2001-2_9
http://doi.org/10.1155/2019%2F9261793
http://doi.org/10.1155/2019%2F9261793
https://doi.org/10.1155/2019/9261793

[16] Hanoch Levy; David W Low. A contraction algorithm for finding small cycle cut-

sets. Journal of Algorithms, 9:470–493, 1988. URL: http://doi.org/10.1016/

0196-6774%2888%2990013-2, doi:10.1016/0196-6774(88)90013-2.

[17] Bar-Yehuda Reuven; Geiger Dan; Naor Joseph (Seffi); Roth Ron M. Approxi-

mation algorithms for the feedback vertex set problem with applications to con-

straint satisfaction and bayesian inference. SIAM Journal on Computing, 27:942–

959, 1998. URL: http://doi.org/10.1137/s0097539796305109, doi:10.

1137/s0097539796305109.

[18] Tang Zhipeng; Feng Qilong; Zhong Ping. Nonuniform neighborhood sampling

based simulated annealing for the directed feedback vertex set problem. IEEE Ac-

cess, 5:12353–12363, 2017. URL: http://doi.org/10.1109/ACCESS.2017.

2724065, doi:10.1109/ACCESS.2017.2724065.

[19] Bergougnoux Benjamin; Eiben Eduard; Ganian Robert; Ordyniak Sebastian; Ra-

manujan M. S. Towards a polynomial kernel for directed feedback vertex set. Al-

gorithmica, 2020. URL: http://doi.org/10.1007/s00453-020-00777-5,

doi:10.1007/s00453-020-00777-5.

[20] Ben Strasser. Computing tree decompositions with flowcutter: PACE 2017 sub-

mission. CoRR, abs/1709.08949, 2017. URL: http://arxiv.org/abs/1709.

08949, arXiv:1709.08949.

[21] Hisao Tamaki. Positive-Instance Driven Dynamic Programming for Treewidth.

In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium

on Algorithms (ESA 2017), volume 87 of Leibniz International Proceedings in Infor-

matics (LIPIcs), pages 68:1–68:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/

volltexte/2017/7880, doi:10.4230/LIPIcs.ESA.2017.68.

[22] R.M. Verma. A general method and a master theorem for divide-and-conquer

recurrences with applications. Journal of Algorithms, 16:67–79, 1994. URL: http:

//doi.org/10.1006/jagm.1994.1004, doi:10.1006/jagm.1994.1004.

25

http://doi.org/10.1016/0196-6774%2888%2990013-2
http://doi.org/10.1016/0196-6774%2888%2990013-2
https://doi.org/10.1016/0196-6774(88)90013-2
http://doi.org/10.1137/s0097539796305109
https://doi.org/10.1137/s0097539796305109
https://doi.org/10.1137/s0097539796305109
http://doi.org/10.1109/ACCESS.2017.2724065
http://doi.org/10.1109/ACCESS.2017.2724065
https://doi.org/10.1109/ACCESS.2017.2724065
http://doi.org/10.1007/s00453-020-00777-5
https://doi.org/10.1007/s00453-020-00777-5
http://arxiv.org/abs/1709.08949
http://arxiv.org/abs/1709.08949
http://arxiv.org/abs/1709.08949
http://drops.dagstuhl.de/opus/volltexte/2017/7880
http://drops.dagstuhl.de/opus/volltexte/2017/7880
https://doi.org/10.4230/LIPIcs.ESA.2017.68
http://doi.org/10.1006/jagm.1994.1004
http://doi.org/10.1006/jagm.1994.1004
https://doi.org/10.1006/jagm.1994.1004

	Motivation
	Introduction
	Classical Contests
	Optimization Challenges

	Pace Challenge
	Directed Feedback Vertex Set Problem
	High-Level Description
	Preliminaries
	Reduction Rules
	Stage I
	Stage II
	Stage III

	Implementation Details
	Complexity Analysis

	Unsuccessful Optimizations
	Conclusion and Future Work
	Bibliography

