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Abstract
Twin-width is a graph parameter that provides an intuitive measure of the similarity between a

graph and a co-graph [1]. To understand this concept, let’s consider a tri-graph initially consisting
of only black edges. We repeatedly apply an operation until only one vertex remains in the graph:
two vertices are merged into a new vertex, and the edges are updated based on specific rules. The
neighborhood of the new vertex is formed by combining the neighborhoods of the contracted vertices.
Within this neighborhood union, an edge is considered black if it appears as a black edge in both
original neighborhoods; otherwise, it becomes red. The twin-width is defined as the highest red
degree encountered at any vertex during the contraction steps that minimize this degree.

In this short paper, we provide an overview of the main techniques utilized in the exact twin-width
algorithm, which we have submitted as the UAIC_Twin_Width solver for the exact track of the
2023 PACE challenge.
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Supplementary Material The source code is available on Zenodo (10.5281/zenodo.8010483) and
GitHub (https://github.com/AndreiiArhire/PACE2023).

1 Preliminaries

Consider a trigraph G = (V, B, R) consisting of a set of vertices V , black edges B, and red
edges R. Here, B and R are subsets of

(
V
2
)
, and they do not have any common elements

(B ∩ R = ∅). Without any specific indication, a graph H = (V, E) is treated as the trigraph
H ′ = (V, E, ∅).

In this context, we define the red degree of a vertex as the number of incident red edges
connected to that vertex. When two vertices are compressed, a new vertex is formed by
considering the edges associated with the original vertices, and subsequently, the original
vertices are removed from the graph.

Formally, the union of vertices x and y, with Bx, By, Rx, and Ry representing the sets of
incident red and black edges, gives rise to a vertex z with the following definitions:

A vertex u ∈ Rz if u ∈ Bx ∪ By ∪ Rx ∪ Ry \ Bx ∩ By.
A vertex u ∈ Bz if u ∈ Bx ∩ By.

As per the requirements of the challenge format, the solver assigns the same label to z as
that of x. By following this process of reducing the graph to a single vertex through these
operations, a sequence of |V | − 1 pairs of vertices is generated. The width of such a sequence

mailto:andreiarhire2708@gmail.com
mailto:chiriac.matei@gmail.com
mailto:radu.timofte@uni-wuerzburg.de
https://zenodo.org/record/8010483
https://github.com/AndreiiArhire/PACE2023


2 UAIC_Twin_Width: An Exact Twin-Width Algorithm

is defined as the maximum red degree encountered at any vertex during the contraction
process.

The twin-width represents the minimum width achievable through a sequence of contrac-
tions that reduces the graph.

2 Solver summary

The solver can be divided into four stages:
1. Contract vertices that do not create any red edges when contracted.
2. Find an upper bound for the entire graph using a hill climbing algorithm.
3. Determine a lower bound for each connected component by using dynamic programming

on multiple sub-graphs.
4. Calculate the twin-width using dynamic programming. Evaluate components in descend-

ing order based on their number of vertices (expected twin-width). A component can
yield a suboptimal solution as long as another component has a twin-width greater than
or equal to its width.

The core of the solver relies on a dynamic programming algorithm that iterates over subsets
of potential solutions. A solution sequence can be visualized as a tree, where x is the parent
of y if the pair (x, y) is part of the sequence. Thus, the remaining vertex in the graph serves
as the root. A partial solution can be seen as a set of trees.

A state in dynamic programming holds the following information:
The sequence of contractions leading to the current solution.
The width of the current solution.
The set of trees determined by the sequence of contractions.
The initial state starts with an empty set, and the final state includes the twin-width value
and the corresponding sequence. Transitioning between states is achieved by appending
a pair of vertices to the partial solution.

To optimize the algorithm, the following observations are utilized:
All pairs used for state transitions consist of either adjacent vertices or vertices with at
least one neighbor in common.
If there exists a pair of vertices whose contraction does not create any new red edges, it
is optimal to contract that pair (as the vertices are twins).
To avoid ending up in non-optimal states multiple times, partial solutions are computed
for l pairs first, followed by partial solutions for l + 1 pairs, where l < |V |.
When comparing a state with t trees α1, . . . , αt to a state with t trees β1, . . . , βt, where
αi and βi (for 1 ≤ i ≤ t) have the same vertices but in different configurations, only
the state with the lower width is retained. Thus, the removed state is guaranteed to be
incapable of obtaining a better solution than the one kept.
Prior to running the algorithm, a low-width solution (upper bound) and a lower bound
value are computed.
A state with a sequence width greater than or equal to the upper bound is excluded.
A state is excluded if the graph obtained by applying the sequence of contractions has
a width lower or equal to the width of the state’s sequence. For each state, a heuristic
algorithm is used to find an upper-bound solution for the generated graph. If the upper
bound is lower than or equal to the current width, appending the heuristic solution to
the current sequence will result in a sequence with the same width.
A state with a width lower than the lower bound does not need to invoke the heuristic
algorithm.
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3 Upper Bounds

An upper bound is calculated using two algorithms, namely the hill climbing algorithm (Ha)
and the greedy algorithm (Ga), although they are used at different stages. On the entire
graph, Ha is utilized to determine an upper bound within a few minutes. Meanwhile, as part
of the decision-making process, Ga is used to determine whether a state should be excluded
from the set of partial solutions.

Ga constructs the sequence by gradually appending pairs of vertices to it, aiming to
minimize the maximum red degree in the graph obtained after contracting the vertices.

Ha begins with a primary solution generated by Ga with a width of w. Let di, 1 ≤ i ≤
|V | − 1, represent the maximum red degree of a vertex during the first i contractions. Since
w represents the width, d|V |−1 = w at the very least. Consider 1 ≤ p ≤ |V | − 1, where
di = di+1 = · · · = d|V |−1 and di−1 < w.

Ha explores multiple derived solutions and retains the one with the highest value of
p, which indicates the solution that remains of width w for as long as possible, preferably
transitioning to width w − 1.

Let (x1, y1), · · · , (xp, yp), · · · , (x|V |−1, y|V |−1) be a solution, where p is as described above.
A potentially improved solution is obtained through the following steps:
Randomly select integers a and b from the range 1 to p, and randomly choose vertices u

and v such that u ̸= yi, 1 ≤ i ≤ a and v ≠ yi, 1 ≤ i ≤ b (where u is present in the graph
after the a-th operation and v is present after the b-th operation).
Update xa to be equal to u.
Swap yb with v, starting from line p.
Initiate Ga from the partial solution consisting of the first p (or fewer) pairs.

Once a specific number of derived solutions have been computed, the best-evaluated solution
is designated as the primary solution. The complexity of Ga is O(|V |3 · |E|), while Ha has a
complexity of O(|V |3 · |E| · T ), where T represents the number of local searches performed.

In the case of public tests that are small enough for Ga to execute rapidly, Ha achieved
the optimal answer in approximately one-fourth to one-third of the tests.

4 Lower Bounds

The twin-width of a graph is always greater than or equal to the twin-width of any of
its sub-graphs. Exploiting this concept, we can determine a lower bound by utilizing the
exact algorithm on various sub-graphs. When applied to public tests, this technique swiftly
identifies the optimal solution for tests where the twin-width is at most three.

For small tests with a twin-width no greater than five, the upper bound often matches the
lower bound. Consequently, it is unnecessary to execute the dynamic programming algorithm
on the entire graph.
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